Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Eur J Clin Microbiol Infect Dis ; 41(9): 1155-1163, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1971739

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global public health concern. The purpose of this study was to investigate the association between genetic variants and SARS-CoV-2 infection and the COVID-19 severity in Chinese population. A total of 256 individuals including 87 symptomatic patients (tested positive for SARS-CoV-2), 84 asymptomatic cases, and 85 close contacts of confirmed patients (tested negative for SARS-CoV-2) were recruited from February 2020 to May 2020. We carried out the whole exome genome sequencing between the individuals and conducted a genetic association study for SARS-CoV-2 infection and the COVID-19 severity. In total, we analyzed more than 100,000 single-nucleotide polymorphisms. The genome-wide association study suggested potential correlation between genetic variability in POLR2A, ANKRD27, MAN1A2, and ERAP1 genes and SARS-CoV-2 infection susceptibility. The most significant gene locus associated with SARS-CoV-2 infection was located in POLR2A (p = 5.71 × 10-6). Furthermore, genetic variants in PCNX2, CD200R1L, ZMAT3, PLCL2, NEIL3, and LINC00700 genes (p < 1 × 10-5) were closely associated with the COVID-19 severity in Chinese population. Our study confirmed that new genetic variant loci had significant association with SARS-CoV-2 infection and the COVID-19 severity in Chinese population, which provided new clues for the studies on the susceptibility of SARS-CoV-2 infection and the COVID-19 severity. These findings may give a better understanding on the molecular pathogenesis of COVID-19 and genetic basis of heterogeneous susceptibility, with potential impact on new therapeutic options.


Subject(s)
COVID-19 , Aminopeptidases , COVID-19/epidemiology , COVID-19/genetics , China/epidemiology , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins , Minor Histocompatibility Antigens , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics
2.
Signal Transduct Target Ther ; 7(1): 261, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1967592

ABSTRACT

Apolipoprotein E (APOE) plays a pivotal role in lipid including cholesterol metabolism. The APOE ε4 (APOE4) allele is a major genetic risk factor for Alzheimer's and cardiovascular diseases. Although APOE has recently been associated with increased susceptibility to infections of several viruses, whether and how APOE and its isoforms affect SARS-CoV-2 infection remains unclear. Here, we show that serum concentrations of APOE correlate inversely with levels of cytokine/chemokine in 73 COVID-19 patients. Utilizing multiple protein interaction assays, we demonstrate that APOE3 and APOE4 interact with the SARS-CoV-2 receptor ACE2; and APOE/ACE2 interactions require zinc metallopeptidase domain of ACE2, a key docking site for SARS-CoV-2 Spike protein. In addition, immuno-imaging assays using confocal, super-resolution, and transmission electron microscopies reveal that both APOE3 and APOE4 reduce ACE2/Spike-mediated viral entry into cells. Interestingly, while having a comparable binding affinity to ACE2, APOE4 inhibits viral entry to a lesser extent compared to APOE3, which is likely due to APOE4's more compact structure and smaller spatial obstacle to compete against Spike binding to ACE2. Furthermore, APOE ε4 carriers clinically correlate with increased SARS-CoV-2 infection and elevated serum inflammatory factors in 142 COVID-19 patients assessed. Our study suggests a regulatory mechanism underlying SARS-CoV-2 infection through APOE interactions with ACE2, which may explain in part increased COVID-19 infection and disease severity in APOE ε4 carriers.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Binding Sites , COVID-19/genetics , Humans , Inflammation/genetics , Protein Binding , Spike Glycoprotein, Coronavirus
3.
Biosens Bioelectron ; 209: 114226, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1767929

ABSTRACT

Protein sensors based on allosteric enzymes responding to target binding with rapid changes in enzymatic activity are potential tools for homogeneous assays. However, a high signal-to-noise ratio (S/N) is difficult to achieve in their construction. A high S/N is critical to discriminate signals from the background, a phenomenon that might largely vary among serum samples from different individuals. Herein, based on the modularized luciferase NanoLuc, we designed a novel biosensor called NanoSwitch. This sensor allows direct detection of antibodies in 1 µl serum in 45 min without washing steps. In the detection of Flag and HA antibodies, NanoSwitches respond to antibodies with S/N ratios of 33-fold and 42-fold, respectively. Further, we constructed a NanoSwitch for detecting SARS-CoV-2-specific antibodies, which showed over 200-fold S/N in serum samples. High S/N was achieved by a new working model, combining the turn-off of the sensor with human serum albumin and turn-on with a specific antibody. Also, we constructed NanoSwitches for detecting antibodies against the core protein of hepatitis C virus (HCV) and gp41 of the human immunodeficiency virus (HIV). Interestingly, these sensors demonstrated a high S/N and good performance in the assays of clinical samples; this was partly attributed to the combination of off-and-on models. In summary, we provide a novel type of protein sensor and a working model that potentially guides new sensor design with better performance.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , COVID-19/diagnosis , Humans , Luciferases , SARS-CoV-2
4.
Nat Med ; 26(6): 845-848, 2020 06.
Article in English | MEDLINE | ID: covidwho-1641979

ABSTRACT

We report acute antibody responses to SARS-CoV-2 in 285 patients with COVID-19. Within 19 days after symptom onset, 100% of patients tested positive for antiviral immunoglobulin-G (IgG). Seroconversion for IgG and IgM occurred simultaneously or sequentially. Both IgG and IgM titers plateaued within 6 days after seroconversion. Serological testing may be helpful for the diagnosis of suspected patients with negative RT-PCR results and for the identification of asymptomatic infections.


Subject(s)
Antibodies, Viral/blood , Antibody Formation/drug effects , Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adult , Aged , Antibody Formation/immunology , Antiviral Agents/therapeutic use , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2
5.
PLoS One ; 16(12): e0261422, 2021.
Article in English | MEDLINE | ID: covidwho-1581744

ABSTRACT

The COVID-19 pandemic has illustrated the importance of infection tracking. The role of asymptomatic, undiagnosed individuals in driving infections within this pandemic has become increasingly evident. Modern phylogenetic tools that take into account asymptomatic or undiagnosed individuals can help guide public health responses. We finetuned established phylogenetic pipelines using published SARS-CoV-2 genomic data to examine reasonable estimate transmission networks with the inference of unsampled infection sources. The system utilised Bayesian phylogenetics and TransPhylo to capture the evolutionary and infection dynamics of SARS-CoV-2. Our analyses gave insight into the transmissions within a population including unsampled sources of infection and the results aligned with epidemiological observations. We were able to observe the effects of preventive measures in Canada's "Atlantic bubble" and in populations such as New York State. The tools also inferred the cross-species disease transmission of SARS-CoV-2 transmission from humans to lions and tigers in New York City's Bronx Zoo. These phylogenetic tools offer a powerful approach in response to both the COVID-19 and other emerging infectious disease outbreaks.


Subject(s)
COVID-19 , Bayes Theorem , Phylogeny
6.
Pediatr Pulmonol ; 57(1): 49-56, 2022 01.
Article in English | MEDLINE | ID: covidwho-1437078

ABSTRACT

OBJECTIVE: Few studies have explored the clinical features in children infected with SARS-CoV-2 and other common respiratory viruses, including respiratory syncytial virus (RSV), Influenza virus (IV), and adenovirus (ADV). Herein, we reported the clinical characteristics and cytokine profiling in children with COVID-19 or other acute respiratory tract infections (ARTI). METHODS: We enrolled 20 hospitalized children confirmed as COVID-19 positive, 58 patients with ARTI, and 20 age and sex-matched healthy children. The clinical information and blood test results were collected. A total of 27 cytokines and chemokines were measured and analyzed. RESULTS: The median age in the COVID-19 positive group was 14.5 years, which was higher than that of the ARTI groups. Around one-third of patients in the COVID-19 group experienced moderate fever, with a peak temperature of 38.27°C. None of the patients displayed wheezing or dyspnea. In addition, patients in the COVID-19 group had lower white blood cells, platelet counts as well as a neutrophil-lymphocyte ratio. Lower serum concentrations of 14 out of 27 cytokines were observed in the COVID-19 group than in healthy individuals. Seven cytokines (IL-1Ra, IL-1ß, IL-9, IL-10, TNF-α, MIP-1α, and VEGF) changed serum concentration in COVID-19 compared with other ARTI groups. CONCLUSION: Patients with COVID-19 were older and showed milder symptoms and a favorable prognosis than ARTI caused by RSV, IV, and ADV. There was a low grade or constrained innate immune reaction in children with mild COVID-19.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Adolescent , China/epidemiology , Humans , Infant , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Tract Infections/diagnosis , SARS-CoV-2
8.
Clin Infect Dis ; 73(3): e531-e539, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338662

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a global pandemic with no licensed vaccine or specific antiviral agents for therapy. Little is known about the longitudinal dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing antibodies (NAbs) in patients with COVID-19. METHODS: Blood samples (n = 173) were collected from 30 patients with COVID-19 over a 3-month period after symptom onset and analyzed for SARS-CoV-2-specific NAbs using the lentiviral pseudotype assay, coincident with the levels of IgG and proinflammatory cytokines. RESULTS: SARS-CoV-2-specific NAb titers were low for the first 7-10 days after symptom onset and increased after 2-3 weeks. The median peak time for NAbs was 33 days (interquartile range [IQR], 24-59 days) after symptom onset. NAb titers in 93.3% (28/30) of the patients declined gradually over the 3-month study period, with a median decrease of 34.8% (IQR, 19.6-42.4%). NAb titers increased over time in parallel with the rise in immunoglobulin G (IgG) antibody levels, correlating well at week 3 (r = 0.41, P < .05). The NAb titers also demonstrated a significant positive correlation with levels of plasma proinflammatory cytokines, including stem cell factor (SCF), TNF-related apoptosis-inducing ligand (TRAIL), and macrophage colony-stimulating factor (M-CSF). CONCLUSIONS: These data provide useful information regarding dynamic changes in NAbs in patients with COVID-19 during the acute and convalescent phases.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Pandemics
9.
Cell Discov ; 7(1): 18, 2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-1152838

ABSTRACT

It is important to evaluate the durability of the protective immune response elicited by primary infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we systematically evaluated the SARS-CoV-2-specific memory B cell and T cell responses in healthy controls and individuals recovered from asymptomatic or symptomatic infection approximately 6 months prior. Comparatively low frequencies of memory B cells specific for the receptor-binding domain (RBD) of spike glycoprotein (S) persisted in the peripheral blood of individuals who recovered from infection (median 0.62%, interquartile range 0.48-0.69). The SARS-CoV-2 RBD-specific memory B cell response was detected in 2 of 13 individuals who recovered from asymptomatic infection and 10 of 20 individuals who recovered from symptomatic infection. T cell responses induced by S, membrane (M), and nucleocapsid (N) peptide libraries from SARS-CoV-2 were observed in individuals recovered from coronavirus disease 2019 (COVID-19), and cross-reactive T cell responses to SARS-CoV-2 were also detected in healthy controls.

10.
Front Immunol ; 11: 610696, 2020.
Article in English | MEDLINE | ID: covidwho-993359

ABSTRACT

Both neutrophil extracellular traps (NETs) and von Willebrand factor (VWF) are essential for thrombosis and inflammation. During these processes, a complex series of events, including endothelial activation, NET formation, VWF secretion, and blood cell adhesion, aggregation and activation, occurs in an ordered manner in the vasculature. The adhesive activity of VWF multimers is regulated by a specific metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Increasing evidence indicates that the interaction between NETs and VWF contributes to arterial and venous thrombosis as well as inflammation. Furthermore, contents released from activated neutrophils or NETs induce the reduction of ADAMTS13 activity, which may occur in both thrombotic microangiopathies (TMAs) and acute ischemic stroke (AIS). Recently, NET is considered as a driver of endothelial damage and immunothrombosis in COVID-19. In addition, the levels of VWF and ADAMTS13 can predict the mortality of COVID-19. In this review, we summarize the biological characteristics and interactions of NETs, VWF, and ADAMTS13, and discuss their roles in TMAs, AIS, and COVID-19. Targeting the NET-VWF axis may be a novel therapeutic strategy for inflammation-associated TMAs, AIS, and COVID-19.


Subject(s)
ADAMTS13 Protein/immunology , COVID-19/immunology , Extracellular Traps/immunology , SARS-CoV-2/immunology , Thrombosis/immunology , von Willebrand Factor/immunology , Acute Disease , Brain Ischemia/immunology , Brain Ischemia/pathology , Brain Ischemia/virology , COVID-19/pathology , Humans , Stroke/immunology , Stroke/pathology , Stroke/virology , Thrombosis/pathology , Thrombosis/virology , Thrombotic Microangiopathies/immunology , Thrombotic Microangiopathies/pathology , Thrombotic Microangiopathies/virology
11.
J Infect Dis ; 222(2): 189-193, 2020 06 29.
Article in English | MEDLINE | ID: covidwho-643587

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel ß-coronavirus, causes severe pneumonia and has spread throughout the globe rapidly. The disease associated with SARS-CoV-2 infection is named coronavirus disease 2019 (COVID-19). To date, real-time reverse-transcription polymerase chain reaction (RT-PCR) is the only test able to confirm this infection. However, the accuracy of RT-PCR depends on several factors; variations in these factors might significantly lower the sensitivity of detection. METHODS: In this study, we developed a peptide-based luminescent immunoassay that detected immunoglobulin (Ig)G and IgM. The assay cutoff value was determined by evaluating the sera from healthy and infected patients for pathogens other than SARS-CoV-2. RESULTS: To evaluate assay performance, we detected IgG and IgM in the sera from confirmed patients. The positive rate of IgG and IgM was 71.4% and 57.2%, respectively. CONCLUSIONS: Therefore, combining our immunoassay with real-time RT-PCR might enhance the diagnostic accuracy of COVID-19.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Immunoenzyme Techniques/methods , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Adult , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Luminescent Measurements , Male , Middle Aged , Pandemics , Peptides/immunology , Pneumonia, Viral/immunology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Viral Proteins/immunology
12.
Nat Med ; 26(8): 1200-1204, 2020 08.
Article in English | MEDLINE | ID: covidwho-606967

ABSTRACT

The clinical features and immune responses of asymptomatic individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have not been well described. We studied 37 asymptomatic individuals in the Wanzhou District who were diagnosed with RT-PCR-confirmed SARS-CoV-2 infections but without any relevant clinical symptoms in the preceding 14 d and during hospitalization. Asymptomatic individuals were admitted to the government-designated Wanzhou People's Hospital for centralized isolation in accordance with policy1. The median duration of viral shedding in the asymptomatic group was 19 d (interquartile range (IQR), 15-26 d). The asymptomatic group had a significantly longer duration of viral shedding than the symptomatic group (log-rank P = 0.028). The virus-specific IgG levels in the asymptomatic group (median S/CO, 3.4; IQR, 1.6-10.7) were significantly lower (P = 0.005) relative to the symptomatic group (median S/CO, 20.5; IQR, 5.8-38.2) in the acute phase. Of asymptomatic individuals, 93.3% (28/30) and 81.1% (30/37) had reduction in IgG and neutralizing antibody levels, respectively, during the early convalescent phase, as compared to 96.8% (30/31) and 62.2% (23/37) of symptomatic patients. Forty percent of asymptomatic individuals became seronegative and 12.9% of the symptomatic group became negative for IgG in the early convalescent phase. In addition, asymptomatic individuals exhibited lower levels of 18 pro- and anti-inflammatory cytokines. These data suggest that asymptomatic individuals had a weaker immune response to SARS-CoV-2 infection. The reduction in IgG and neutralizing antibody levels in the early convalescent phase might have implications for immunity strategy and serological surveys.


Subject(s)
Asymptomatic Infections , Coronavirus Infections/blood , Coronavirus Infections/immunology , Immunity, Innate , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Adolescent , Adult , Aged , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Child , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Cytokines/blood , Cytokines/immunology , Female , Hospitalization , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Young Adult
14.
Genes Dis ; 7(4): 535-541, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-52595

ABSTRACT

In December 2019, the corona virus disease 2019 (COVID-19) caused by novel coronavirus (SARS-CoV-2) emerged in Wuhan, China and rapidly spread worldwide. Few information on clinical features and immunological profile of COVID-19 in paediatrics. The clinical features and treatment outcomes of twelve paediatric patients confirmed as COVID-19 were analyzed. The immunological features of children patients was investigated and compared with twenty adult patients. The median age was 14.5-years (range from 0.64 to 17), and six of the patients were male. The average incubation period was 8 days. Clinically, cough (9/12, 75%) and fever (7/12, 58.3%) were the most common symptoms. Four patients (33.3%) had diarrhea during the disease. As to the immune profile, children had higher amount of total T cell, CD8+ T cell and B cell but lower CRP levels than adults (P < 0.05). Ground-glass opacity (GGO) and local patchy shadowing were the typical radiological findings on chest CT scan. All patients received antiviral and symptomatic treatment and the symptom relieved in 3-4 days after admitted to hospital. The paediatric patients showed mild symptom but with longer incubation period. Children infected with SARS-CoV-2 had different immune profile with higher T cell amount and low inflammatory factors level, which might ascribed to the mild clinical symptom. We advise that nucleic acid test or examination of serum IgM/IgG antibodies against SARS-CoV-2 should be taken for children with exposure history regardless of clinical symptom.

15.
J Med Virol ; 92(6): 577-583, 2020 06.
Article in English | MEDLINE | ID: covidwho-32888

ABSTRACT

The aim of this study was to analyze the clinical data, discharge rate, and fatality rate of COVID-19 patients for clinical help. The clinical data of COVID-19 patients from December 2019 to February 2020 were retrieved from four databases. We statistically analyzed the clinical symptoms and laboratory results of COVID-19 patients and explained the discharge rate and fatality rate with a single-arm meta-analysis. The available data of 1994 patients in 10 literatures were included in our study. The main clinical symptoms of COVID-19 patients were fever (88.5%), cough (68.6%), myalgia or fatigue (35.8%), expectoration (28.2%), and dyspnea (21.9%). Minor symptoms include headache or dizziness (12.1%), diarrhea (4.8%), nausea and vomiting (3.9%). The results of the laboratory showed that the lymphocytopenia (64.5%), increase of C-reactive protein (44.3%), increase of lactic dehydrogenase (28.3%), and leukocytopenia (29.4%) were more common. The results of single-arm meta-analysis showed that the male took a larger percentage in the gender distribution of COVID-19 patients 60% (95% CI [0.54, 0.65]), the discharge rate of COVID-19 patients was 52% (95% CI [0.34,0.70]), and the fatality rate was 5% (95% CI [0.01,0.11]).


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Pandemics , Patient Discharge/statistics & numerical data , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Betacoronavirus/pathogenicity , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19 , China/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Cough/blood , Cough/diagnosis , Cough/physiopathology , Dyspnea/blood , Dyspnea/diagnosis , Dyspnea/physiopathology , Female , Fever/blood , Fever/diagnosis , Fever/physiopathology , Humans , Incidence , Lymphopenia/blood , Lymphopenia/diagnosis , Lymphopenia/physiopathology , Male , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , SARS-CoV-2 , Sex Factors , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL